Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 14(3)2024 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-38334580

RESUMO

This study evaluates the removal of several dyes with different charge properties, i.e., anionic (Acid Red 88), cationic (Basic Red 13), and neutral (Basic Red 5) using transition metal-doped TiO2 supported on a high-surface-area activated carbon. Experimental results confirm the successful deposition of TiO2 and the derivatives (Zr-, Cu-, and Ce-doped samples) on the surface of the activated carbon material and the development of extended heterojunctions with improved electronic properties. Incorporating a small percentage of dopants significantly improves the adsorption properties of the composites towards the three dyes evaluated, preferentially for sample AC/TiO2_Zr. Similarly, the photodegradation efficiency highly depends on the nature of the composite evaluated and the characteristics of the dye. Sample AC/TiO2_Zr demonstrates the best overall removal efficiency for Acid Red 88 and Basic Red 5-83% and 63%, respectively. This promising performance must simultaneously be attributed to a dual mechanism, i.e., adsorption and photodegradation. Notably, the AC/TiO2_Ce outperformed the other catalysts in eliminating Basic Red 13 (74%/6 h). A possible Acid Red 88 degradation mechanism using AC/TiO2_Zr was proposed. This study shows that the removal efficiency of AC/TiO2 composites strongly depends on both the material and pollutant.

2.
Sci Rep ; 12(1): 973, 2022 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-35046424

RESUMO

Organic dyes such as methyl orange (MO) and methylene blue (MB) are widely used in different industries and have become one of the leading emerging water contaminants. The purpose of the current research is to develop new polymer nanocomposite filters for the effective elimination of the dyes, which are non-biodegradable and not efficiently removed by traditional treatment methods. New padded and covered filters were produced applying polystyrene-acrylic/ZnO nanocomposite on the polyester surface by blade coating and one-bath pad methods. Principal results determined by SEM analysis confirm that functionalised layer can create unprecedented function of filter textile material depending on the way of treatment. Due to the modification, the surface area increased from 5.9 for untreated polyester to 85.2 (padded), 44.6 (covered) m2/g. The measured pore size of produced filters is around 3.4 nm, which corresponds to the mesoporous structure. Our study reported effective filters with the rate of MB and MO removal efficiencies up to 60%. Moreover, a colourless reduced form of MB-leuco-methylene blue (LMB) could be created. The functionalised layer of the developed filters through hydrogen bonding between the -OH groups of styrene-acrylic molecules and the -N(CH3)2 groups on LMB can stabilise LMB.

3.
Nanomaterials (Basel) ; 11(7)2021 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-34361165

RESUMO

We demonstrated the deposition of the architecture of graphene oxide on stainless steel substrate and its potential environmental application. The synthesis and characterization of graphene oxide were described. The controlled formation of graphene oxide coatings in the form of the homogenous structure on stainless steel is demonstrated by scanning electron microscopy (SEM). The structure, morphology and properties of the material were assessed by Fourier transform infrared (FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, transmission electron microscopy (TEM) and atomic force microscopy (AFM). The morphology and stability of these structures are shown to be particularly related to the pre-treatment of stainless steel substrate before the electrophoretic deposition. This approach opens up a new route to the facile fabrication of advanced electrode coatings with potential use in environmental applications.

4.
J Environ Manage ; 292: 112757, 2021 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-34000452

RESUMO

The combination of several methods (X-ray diffraction, X-ray photoelectron spectroscopy, energy dispersive X-ray analysis, infrared spectroscopy) was applied to study the changes that have occurred during the adsorption of Zn(II) and Mn(II) ions on a carbonized sunflower sample for understanding a mechanism of heavy metals adsorption. Sunflower biochar was obtained from the stem and inflorescences sunflower wastes through pyrolysis at 600 °C for 30 min. According to the infrared spectroscopy and Boehm titration data, this carbonized material has acidic and basic functional groups on its surface, but they do not participate in the metal ions adsorption. However, the synthesized carbon proved to be a sustainable high-effective adsorbent for zinc(II) and manganese(II) ions removal with adsorption capacity 138.3 mg g-1 of Zn2+ and 45.4 mg g-1 for Mn2+. Surface analysis of the carbonized material by energy dispersive X-ray analysis, X-ray diffraction, and X-ray photoelectron spectroscopy indicated the presence of soluble and insoluble inorganic salts, such as KCl, NaCl, NaHCO3, KHCO3, CaCO3, MgCO3. It was established, that during the adsorption process, soluble salts are washed away, and new insoluble ones are formed assisting by Zn(II) and Mn(II) ions. It has been revealed that the adsorptive removal of Zn2+ and Mn2+ is caused by the precipitation mechanism. The efficiency of removing Zn(II) and Mn(II) ions from water contaminated with battery waste by the same mechanism is shown.


Assuntos
Helianthus , Poluentes Químicos da Água , Adsorção , Carvão Vegetal , Cinética , Percepção , Água , Poluentes Químicos da Água/análise , Zinco/análise
5.
Waste Manag Res ; 39(4): 584-593, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32705958

RESUMO

This research deals with a highly efficient, selective, low-cost, and recyclable adsorbent for the fast removal of lead (Pb)(II) ions from aqueous solutions, and an investigation of the related adsorption mechanisms. Three types of materials were prepared from pea peels waste using simple, energy-efficient and environmentally friendly treatment. Obtained adsorbents were characterized by elemental analysis, infrared spectroscopy, scanning electron microscopy, Boehm titration, and the main parameters were determined. The highest adsorption capacity was observed for the biochar prepared by heating of pea peels at 600°C for 30 minutes. The uptake of Pb(II) ions on pea peels-derived samples was examined as a function of pH, contact time, and initial Pb2+ concentration. Obtained results from adsorption experiments of Pb(II) ions on the biochar surface indicate high adsorption capacity, and the possibility of its preconcentration and selective removal in the presence of zinc(II) and cadmium(II) ions. This confirms a potential application of such materials in water remediation.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Adsorção , Concentração de Íons de Hidrogênio , Íons , Cinética , Pisum sativum , Poluentes Químicos da Água/análise
6.
ACS Omega ; 5(25): 15290-15300, 2020 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-32637802

RESUMO

Production of environmentally friendly multitasking materials is among the urgent challenges of chemistry and ecotechnology. The current research paper describes the synthesis of amino-/silica and amino-/phenyl-/silica particles using a one-pot sol-gel technique. CHNS analysis and titration demonstrated a high content of functional groups, while scanning electron microscopy revealed their spherical form and ∼200 nm in size. X-ray photoelectron spectroscopy data testified that hydrophobic groups reduced the number of water molecules and protonated amino groups on the surface, increasing the portion of free amino groups. The complexation with Cu(II) cations was used to analyze the sorption capacity and reactivity of the aminopropyl groups and to enhance the antimicrobial action of the samples. Antibacterial activities of suspensions of aminosilica particles and their derivative forms containing adsorbed copper(II) ions were assayed against Gram-positive (Staphylococcus aureus ATCC 25923) and Gram-negative bacteria (Escherichia coli ATCC 25922 and Pseudomonas aeruginosa ATCC 27853). Meanwhile, antifungal activity was tested against fungi (Candida albicans UCM Y-690). According to zeta potential measurements, its value could be depended on the suspension concentration, and it was demonstrated that the positively charged suspension had higher antibacterial efficiency. SiO2/-C6H5/-NH2 + Cu(II) sample's water suspension (1%) showed complete growth inhibition of the bacterial culture on the solid medium. The antimicrobial activity could be due to occurrence of multiple and nonspecific interactions between the particle surfaces and the surface layers of bacteria or fungi.

7.
J Hazard Mater ; 381: 120996, 2020 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-31445473

RESUMO

Novel macroporous iron oxide nanocomposite cryogels were synthesized and assessed as arsenite (As(III)) adsorbents. The two-step synthesis method, by which a porous nanonetwork of iron oxide is firstly formed, allowed a homogeneous dispersion of the iron oxide in the cryogel reaction mixture, regardless of the nature of the co-polymer forming the cryogel structure. The cryogels showed excellent mechanical properties, especially the acrylamide-based cryogel. This gel showed the highest As(III) adsorption capacity, with the maximum value estimated at 118 mg/g using the Langmuir model. The immobilization of the nanostructured iron oxide gel into the cryogel matrix resulted in slower adsorption kinetics, however the cryogels offer the advantage of a stable three-dimensional structure that impedes the release of the iron oxide nanoparticles into the treated effluent. A preliminary toxicity evaluation of the cryogels did not indicate any apparent inhibition of human hepatic cells activity, which together with their mechanical stability and high adsorption capacity for As(III) make them excellent materials for the development of nanoparticle based adsorption devices for drinking water treatment.


Assuntos
Arsênio/química , Criogéis/química , Compostos Férricos/química , Poluentes Químicos da Água/química , Purificação da Água/métodos , Adsorção , Sobrevivência Celular/efeitos dos fármacos , Criogéis/toxicidade , Compostos Férricos/toxicidade , Células Hep G2 , Humanos
8.
J Hazard Mater ; 361: 374-382, 2019 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-30265906

RESUMO

The present study is aimed at investigations on the catalytic activity for total oxidation of volatile organic compounds (VOCs), such as toluene, acetone, n-hexane and dichlorobenzene onto zeolite-like materials synthesized from coal fly ash (FA) directed to development of an economically efficient approach for degradation of VOCs. Fly ash zeolites (FAZ) were prepared by alkaline conversion of FA collected from Thermal Power Plants supplied with lignite coal from "Maritza-East" basin in Bulgaria. Different synthesis procedures double stage fusion-hydrothermal activation, fusion-atmospheric crystallization and atmospheric aging were applied. The synthesis products were identified by X-ray diffraction, and were assigned to zeolite Na-X. Scanning electron microscopy images reveal submicron dimensions of the composing crystallites. Nitrogen adsorption/desorption measurements reveal a mixed micro-mesoporous structure and specific surface area between 116 and 396 m2/g for the obtained FAZ. Relationships between surface properties, iron content and the catalytic activity of FAZ were investigated and discussed. Copper-modified fly ash zeolites (Cu-FAZ) were prepared by incipient wetness impregnation technique with copper acetylacetonate. The loading of 5 wt. % copper on the zeolite samples was achieved. The catalytic activity of FAZ and Cu-FAZ in the total oxidation of model VOCs mixture containing n-hexane, acetone, toluene, 1,2 dichlorobenzene was evaluated.

9.
Sci Rep ; 8(1): 8592, 2018 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-29872076

RESUMO

The magnetite nanoparticles were functionalized with silica shells bearing mercaptopropyl (monofunctional) and mercaptopropyl-and-alkyl groups (bifunctional) by single-step sol-gel technique. The influence of synthetic conditions leading to increased amounts of active functional groups on the surface and improved capacity in the uptake of Ag(I), Cd(II), Hg(II), and Pb(II) cations was revealed. The physicochemical properties of obtained magnetic nanocomposites were investigated by FTIR, Raman, XRD, TEM, SEM, low-temperature nitrogen ad-/desorption measurements, TGA, and chemical microanalysis highlighting the efficiency of functionalization and mechanisms of the preparation procedures. The removal of the main group of heavy metal cations was studied in dependence from the pH, contact time and equilibrium concentration to analyze the complexes composition for the large scale production of improved adsorbents. It was demonstrated that introduction of the alkyl groups into the surface layer prevents the formation of the disulfide bonds between adjacent thiol groups. The obtained adsorbents were employed to treat real wastewater from Ruskov, Slovakia with concentration of Fe 319 ng/cm3, Cu 23.7 ng/cm3, Zn 36 ng/cm3, Mn 503 ng/cm3, Al 21 ng/cm3, As 34 ng/cm3, Pb 5.8 ng/cm3, Ni 35 ng/cm3, Co 4.2 ng/cm3, Cr 9.4 ng/cm3, Sb 6 ng/cm3, Cd 5 ng/cm3. These materials proved to be highly effective in the removal of 50% of all metal ions, espeсially Zn, Cd, and Pb ions from it and turned recyclable, opening for their sustainable use in water purification.

10.
Artigo em Inglês | MEDLINE | ID: mdl-29408432

RESUMO

The use of manufactured nanoparticles (NPs) is spreading rapidly across technology and medicine fields, posing concerns about their consequence on ecosystems and human health. The present study aims to assess the biological responses triggered by iron oxide NPs (IONPs) and iron oxide NPs incorporated into zeolite (IONPZ) in relation to oxidative stress on the land snail Helix aspersa in order to investigate its use as a biomarker for terrestrial environments. Morphology and structure of both NPs were characterized. Snail food was supplemented with a range of concentrations of IONPs and IONPZ and values of the hemocyte lysosomal membranes' destabilization by 50% were estimated by the neutral red retention (NRRT50) assay. Subsequently, snails were fed with NPs concentrations equal to half of the NRRT50 values, 0.05 mg L-1 for IONPs and 1 mg L-1 for IONPZ, for 1, 5, 10 and 20 days. Both effectors induced oxidative stress in snails' hemocytes compared to untreated animals. The latter was detected by NRRT changes, reactive oxygen species (ROS) production, lipid peroxidation estimation, DNA integrity loss, measurement of protein carbonyl content by an enzyme-linked immunoabsorbent assay (ELISA), determination of ubiquitin conjugates and cleaved caspases conjugates levels. The results showed that the simultaneous use of the parameters tested could constitute possible reliable biomarkers for the evaluation of NPs toxicity. However, more research is required in order to enlighten the disposal and toxic impact of iron oxide NPs on the environment to ensure their safe use in the future.


Assuntos
Poluentes Ambientais/toxicidade , Compostos Férricos/toxicidade , Caracois Helix/efeitos dos fármacos , Hemócitos/efeitos dos fármacos , Lisossomos/efeitos dos fármacos , Nanopartículas Metálicas/toxicidade , Zeolitas/toxicidade , Administração Oral , Animais , Ensaio Cometa , Dano ao DNA , Relação Dose-Resposta a Droga , Monitoramento Ambiental , Poluentes Ambientais/administração & dosagem , Poluentes Ambientais/química , Compostos Férricos/administração & dosagem , Compostos Férricos/química , Caracois Helix/metabolismo , Caracois Helix/ultraestrutura , Hemócitos/metabolismo , Hemócitos/ultraestrutura , Membranas Intracelulares/efeitos dos fármacos , Membranas Intracelulares/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Lisossomos/metabolismo , Lisossomos/ultraestrutura , Nanopartículas Metálicas/química , Nanopartículas Metálicas/ultraestrutura , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Estresse Oxidativo/efeitos dos fármacos , Tamanho da Partícula , Carbonilação Proteica/efeitos dos fármacos , Propriedades de Superfície , Fatores de Tempo , Zeolitas/administração & dosagem , Zeolitas/química
11.
Chemosphere ; 190: 405-416, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29024885

RESUMO

Degradation of commercial grade Reactive Black 5 (RB5) azo dye by chemical and electrochemical treatment was examined using a dimensionally stable anode and stainless steel cathodes as electrode materials, with NaCl as supporting electrolyte. The electrochemical treatment was compared to the chemical treatment with hypochlorite generated by electrolysis. The compounds present in the commercial grade RB5 azo dye and the products of its electrochemical degradation were separated using ion-pairing high performance liquid chromatography on reversed phase. The separated species were detected by diode array detector and electrospray ionization mass spectrometry. A suitable ion-pairing reversed phase HPLC-MS method with electrospray ionization for the separation and identification of the components was developed. The accurate mass of the parent and fragment ions were used in the determination of the empirical formulas of the components using the first-order mass spectra. Structural formulas of degradation products were proposed using these information and principles of organic chemistry and electrochemistry.


Assuntos
Eletrólise/métodos , Naftalenossulfonatos/química , Compostos Azo/química , Cromatografia Líquida de Alta Pressão/métodos , Corantes/química , Estrutura Molecular , Peso Molecular , Oxirredução , Espectrometria de Massas por Ionização por Electrospray/métodos , Purificação da Água/métodos
12.
Beilstein J Nanotechnol ; 8: 334-347, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28243572

RESUMO

Spherical silica particles with bifunctional (≡Si(CH2)3NH2/≡SiCH3, ≡Si(CH2)3NH2/≡Si(CH2)2(CF2)5CF3) surface layers were produced by a one-step approach using a modified Stöber method in three-component alkoxysilane systems, resulting in greatly increased contents of functional components. The content of functional groups and thermal stability of the surface layers were analyzed by diffuse reflectance infrared Fourier transform (DRIFT) spectroscopy, and 13C and 29Si solid-state NMR spectroscopy revealing their composition and organization. The fine chemical structure of the surface in the produced hybrid adsorbent particles and the ligand distribution were further investigated by electron paramagnetic resonance (EPR) and electron spectroscopy of diffuse reflectance (ESDR) spectroscopy using Cu2+ ion coordination as a probe. The composition and structure of the emerging surface complexes were determined and used to provide an insight into the molecular structure of the surfaces. It was demonstrated that the introduction of short hydrophobic (methyl) groups improves the kinetic characteristics of the samples during the sorption of copper(II) ions and promotes fixation of aminopropyl groups on the surface of silica microspheres. The introduction of long hydrophobic (perfluoroctyl) groups changes the nature of the surface, where they are arranged in alternately hydrophobic/hydrophilic patches. This makes the aminopropyl groups huddled and less active in the sorption of metal cations. The size and aggregation/morphology of obtained particles was optimized controlling the synthesis conditions, such as concentrations of reactants, basicity of the medium, and the process temperature.

13.
Aquat Toxicol ; 172: 9-20, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26751245

RESUMO

Nanoparticles (NPs), due to their increased application and production, are being released into the environment with unpredictable impact on the physiology of marine organisms, as well as on entire ecosystems and upcoming effects on human health. The aim of the present study was to evaluate and compare the oxidative responses of the mussel Mytilus galloprovincialis after exposure to iron oxide NPs and to iron oxide NPs incorporated into zeolite for 1, 3 and 7 days. Our results showed that both effectors induced changes on animal physiology by causing oxidative stress in hemocytes of exposed mussels compared to control animals. This was shown by the significant increase in reactive oxygen species (ROS) production, protein carbonylation, lipid peroxidation, ubiquitin conjugates and DNA damage. In addition an increase in prooxidant levels as measured by the prooxidant-antioxidant balance (PAB) assay was observed in exposed mussels' hemolymph. The results show that ROS, DNA damage, protein and lipid oxidation, ubiquitin conjugates and PAB could constitute, after further investigation, reliable biomarkers for the evaluation of pollution or other environmental stressors. In addition, more studies are needed in order to ensure the safety of these NPs on various biomedical applications, since it is critical to design NPs that they meet the demands of application without causing cellular toxicity.


Assuntos
Compostos Férricos/toxicidade , Mytilus/efeitos dos fármacos , Nanopartículas/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Antioxidantes/metabolismo , Biomarcadores/análise , Dano ao DNA , Hemócitos/efeitos dos fármacos , Peroxidação de Lipídeos/efeitos dos fármacos , Oxirredução/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Carbonilação Proteica/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo
14.
Water Environ Res ; 84(9): 753-60, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23012775

RESUMO

Industrial wastewater may contain high molybdenum concentrations, making treatment before discharge necessary. In this paper, the removal of molybdate anions from water is presented, using clinoptilolite zeolite coated with magnetite nanoparticles. In batch experiments the influence of pH, ionic strength, possible interfering (oxy)anions, temperature and contact time is investigated. Besides determination of kinetic parameters and adsorption isotherms, thermodynamic modeling is performed to get better insight into the adsorption mechanism; molybdenum is assumed to be adsorbed as a FeOMoO2(OH).2H2O inner-sphere complex. At the optimum pH of 3, the adsorption capacity is around 18 mg molybdenum per gram adsorbent. The ionic strength of the solution has no influence on the adsorption capacity. Other anions, added to the molybdenum solution in at least a tenfold excess, only have a minor influence on the adsorption of molybdenum, with the exception of phosphate. Adsorption increases when temperature is increased. It is demonstrated that the adsorbent can be used to remove molybdenum from industrial wastewater streams, and that the limitations set by the World Health Organization (residual concentration of 70 microg/l Mo) can easily be met.


Assuntos
Óxido Ferroso-Férrico/química , Molibdênio/isolamento & purificação , Poluentes Químicos da Água/isolamento & purificação , Zeolitas/química , Adsorção , Concentração de Íons de Hidrogênio , Cinética , Molibdênio/química , Concentração Osmolar , Termodinâmica
15.
J Phys Condens Matter ; 20(20): 200301, 2008 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-21694229

RESUMO

The 11th International Conference on Magnetic Fluids (ICMF 11) was held in Kosice, Slovakia between 23-27 July 2007. Attendance at the conference was high and its motivation was in line with the ten previous ICMF conferences organized in Udine, Orlando, Bangor, Sendai-Tokyo, Riga, Paris, Bhavnagar, Timisoara, Bremen and Guarujá. The conference in Slovakia reflected the scientific community's enthusiasm and worldwide support, with 256 participants, from 30 countries attending.The main objective of ICMF 11 was to promote progress and knowledge in the field of magnetic fluids regarding their chemistry, physical and magnetic properties, heat and mass transfer, surface phenomena, as well as their technological and biomedical applications. As research on magnetic fluids is essentially interdisciplinary, experts from related areas were invited to present their contributions with a view to increasing knowledge in the field and highlighting new trends. Submitted communications were refereed by members of the Scientific Organizing Committee and abstracts were assembled in a book of abstracts. Participants presented 180 posters in two poster sessions and 56 oral presentations. All presentations contributed to a greater understanding of the area, and helped to bridge the gap between physics, chemistry, technology, biology and medical sciences. Contributions to this conference are presented in 115 scientific papers, with some published in Journal of Physics: Condensed Matter and the rest in Magnetohydrodynamics. The organization of the conference was made possible by generous support from the Institute of Experimental Physics and Institute of Geotechnics of the Slovak Academy of Sciences, the University of Pavol Jozef Safárik and the Slovak Physical Society. Financial support from Ferrotec, Cryosoft Ltd, Mikrochem, Liquids Research Ltd, Askony and US Steel Kosice, is also gratefully acknowledged.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA